Utilizing FPGA as Synthetic Instruments for Test Reuse

Neil G. Jacobson A.T.E. Solutions, Inc., NeilJ@BestTest.com

Louis Y. Ungar A.T.E. Solutions, Inc., USA LouisUngar@ieee.org

Problems to solve (in field test)

- ATS obsolescence with rapidly advancing technologies
 - Speed, bus protocol, etc.
 - Handshaking, non-determinism
- Legacy ATS to deal with thousands of UUT types
 - Service depot limitations (space, legacies)
 - Very few units, but high diversity of units
- Development cost of new ATE hardware/software and TPS
 - Custom circuits require longer development time for new ATE
 - New ATE requires total rewrite of **ALL** test program and test interfaces

A very different situation as compared to Manufacturing Test !

HSIO Test Challenges

Channel loss

De-emphasis

Pre-emphasis

Equalization

BER EYE DIAGRAM

differential Low voltage swing Signal-to-noise ratio at Amount of distortion the sampling point (set by signal-to-noise ratio) Time variation - 2 of zero crossing Slope indicates sensitivity to timing error; the smaller, the better - 8 Best time to sample (decision point) Measure of jitter Most open part of eye = best signal-to-noise ratio - 10

- 4

- 6

- 12

- 14 16

ERROR RETRY

Handshaking initialization

Sometimes, getting the right answer may not be right

Despite having open/shorts, data may still be captured due to differential nature of signaling

• A DC test, may detect these faults better than signaling tests

An ATE on FPGA?

7 Series Transceiver Roadmap - 40nm => 28nm

Piggyback on FPGA scaling and transceiver performance trend

Challenges at the service depot

Which part of these is faulty? Is it replaceable?

Diagnosing Test is critical here

Diagnosable Test Flow – incremental, progressive

Test Methodology embedded in "firmware"

High-Speed I/O Tester with FPGA

IP cores

Rx sensitivity test (analog fault injection)

UUT Rx test setup

Summary

- ATE/ATS on a chip (FPGA) is possible
- Development of such a system is more cost effective and scalable
- TPS for such a system cost much less (due to simple commands and reusability) to develop

For more details, check the following posted white papers

